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We shall consider here a method for the construction of some non-similar- 
ity solutions of the equation of plane isothermal unsteady q dtion of a 
gas in a poroua medium, based on the uae of self -similar solutions for 
the same equation [ 1,~ 1. 

1. It is known that the solutions of the form t”f(xtsP), eaXf(td3’) 

and eatf(xest), where a and @ are constants satisfying certain relations, 
exhaust all the self-similar solutions of the equation. To these prob- 
lems correspond the following boundary and initial dependences for the 

density p (I, t) at x = 0 and t = 0 respectively: 

Using some particular gas motions, those with similarity solutions, 
we can obtain a solution for cases in which the function ~(0. t) of the 
growth of the pressure at the zero section (X = 0) is a piecewise smooth 
continuous function. 

In addition, the following should also be pointed out. From one Point 
of view, the function ~(0, t) of the solution may be taken to be *exact” 
(the meaning of this concept will be clarified later): on the other hand. 
an estimate of p(0, t) may be obtained from below or from above; in this 
case we can use the theorem of Barenblatt and Vishik on the monotone de- 
pendence of the solution of the differential equation of Boussinesq on 
initial and boundary conditions [3 1; this can be generalized without 
difficulty to the larger general class of the differential equations 
which appear in gas and liquid filtration in a porous medium. 
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2. We will make use of 
plane flows of a gas with 
has the following form: 
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some results of [ 2 1. We limit ourselves to 
fixed temperature. The equation in this case 

dp 1 at = azpt 1 ax2 (2.1) 

The solution of Equation (2.1) for boundary and initial conditions 

p (0, t) = citp (p 3 0). p (x, 0) = 0 (x 2 0) (2.4 

has the form 

p (x, q = at” j (xs-‘l?c‘/‘t- (W/Z) (2.3) 

where f(t) is determined by the following problem: 

(f (0) = 1, \ f (8 dE -=c -> (2.4) 

0 
Reference [ 2 1 presents a table of the function f([, p) obtained as a 

result of integrating (2.4) with the help of power series. Our analysis 
of the function shows that for 3 > p > 0.5 all curves may be replaced 
with great accuracy with broken lines 

f(E)-l--E/E0 for E,GE0,. f (j) = 0 for E > EO (2.5) 

where c$,, is the coordinate of the wave front. determined from the graph 

to = e(i) introduced in [ 2 ] . 

Thus, for 3 > p > 0.5 the function f(c) in (2.5) can be obtained 
sufficient accuracy for all practical purposes for the construction 
solution of Equation (2.1). 

with 

of the 

We note that for the case p = 1 the solution 1 - [/co, where to = 4 2, 
is accurate in the exact sense. 

It appears that the function f(t) (2.5) can be very simply worked out 
for the solution for the case of the piecewise smooth function ~(0, t), 

constructed from sections of the following curves: 

p (0, 1) = c, tp, for tl>t>OO, ~(0, 1) = ~~(t -t_ t)l)? for t .+ 1, (2.6) 

where tl, r, plS p2. o1 and 1.7~ are constants connected (as we shall see 
below) by some relations. For that, it is evident that 3 >pl 2 > 0.5. 

The solution is obtained in the following form. For t = tl we have 

Gltp = G2 (tl + ?p (2.7) 

At the time t = tl the density distribution, corresponding to the case 
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P,(o$ t) = (rl tPls according to (2.5) has the following form: 

Pl 6% 11) = sP 
[ 

1 - I 
At the same value of time but for the condition 

p2 (0, q = 62 (t -t- + 

(2.8) 

(2.9) 

the density distrfbution will be 

pe (2, 21) = a‘a {“I + z)% 
X 

50 (&1ps) (b26-1 Ih + ?)‘+v’* 
(2.10) 

We require at that value of time a density distribution which satis- 
fies both (2.8) and (2.10). Thus, takfng into account (2.91, we obtain 

go (pl) g11r‘(l+P,)/2 = Eo (pp) a;‘* (tl -+- zp+pz)‘2 (2.11) 

For condition (2.9) and (2.11) superposition of the values “1, u2, r 

and tl shows that Expressions (2.8) and (2.10) will obviously be “exact” 
solutions (in the sense considered above) of the problems corresponding, 
respectively, to the intervals tl> t > 0 and t > tl. 

Exarple. Let pl(9, tf = olt. p,(O, t) = oq(t + P]‘. In this case, 

from the graph of [e(p) in E3 3, [e(l) = \/ 2 and [e(2) = 1.1138. Thus, 
from Formulas (2.9) and (2.11) we have 

From this r = 0.613 fl, u2 = 0.384 cl/tl. Thus, for a piecewise smooth 
continuous function of the density at x = 0 of the form 

the solution has the following form: 

p (2, t) = 
(0.613 tl + t)2 [ 1 - 

C’JZ x 

1.1136 (0.364 al/ t#‘(O.613 tl + t)” I 

3. In the preceding section we were able to obtain “exact” solutions 
for non-similarity cases because the power exponent p corresponded to 
the linear character of the density distribution in the x-variable. 
Evidently less satisfactory results will be obtained for piecewise smooth 
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eontinuous functions with exponent p smaller than 0.5. However, actual 
density distributions, which do not require more exactness, with CC to 
can be approximated [4 ] with a straight line of the form 1 - [/Eo, and, 
as indicated above, the solution for piecewise smooth continuous func- 
tions can be extended to all values of the exponent from zero to three. 
However, it is next necessary to estimate “from below” and “from above” 
the solutions obtained by the method presented. It is especially im- 
portant in those cases where the profiles of the density distribution to 
be studied have an essentially convex or conoave form. 

The idea of the estimate cau be stated in the following way: suppose 
that for a power law of growth of density at the x = 0 p (0, tf = “I tP1 

there is obtained at t = tl the density distribution 

Pl (XI h) = 9 hP1fl(261 -%$/at-- (l+Pq (3.1) 

For t > t the law of density growth at x = 0 will be p(0, t) = 
02(r + tjP2, To this law there corresponds for t = tl the fOllOWfW 
density distribution: 

where for no values of the parameters r , o1 and ~2 of the functions fl 
and f2 can the density distributions coincide. 

(‘Qx, ?I, p(2)(x. t) of Equation (2.11, 
whe:,o”,7’Y~~~e~l~~ ,““rtr”“:l; for t = tl and for t ,> tl, p(‘)(O, t) > 

pC2’(0, t). 

We choose the parameters which appear in the boundary conditions for 
the solutions p(l) and pC2’, in such a manner that 

p(l) (2. h) a p (z tl) z pC2) (% h), 1.2 ’ 

Then, aooording to the theorem of 
following inequality must hold: 

@f (0, t) k PI a (0, t) 2 p(“) (0, t> (3.3) 

Barenblatt and Vishib f 3 ] I the 

p(I) (x, 2) G= pl,2 (& 4 2 p(2) (2, $1 for t > tl (3.4) 

The choice of the majorant .p(‘) and the minorant pt2) depends on the 
conditions of the problem.* 

l It should be noted that in [3 1 an indication is given of the possi- 
bility of using this theorem for estimating the solution of Equation 
(2.1). 
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Exarp le. Let 

p (0, 1) = Ql t for Li> t>,O, p (0, t) = ca for tat1 (3.5) 

For t = tl the density distribution has the form 

Pl(", t)=61h[l-(gy~] (3.6) 

For the same moment of time tl the density distribution corresponding 
to an instantaneous growth of density at the zero section [p = 0 1 at a 
time r(l) up to the value a9 = oI tI will be 

pa (22, t) = 5.22Q{i [I -0.4375k1] --; [1 - 0.4375&]2 +, . .} 

El = 2st-1/2 ,‘/r ( tl _ ~(1) )-1/z 

(3.7) 

(3.8) 

In the figure the line labeled 1 and the curve 2 are contructed 
according to Formulas (3.6) and (3.7), where the interval of time I (I) 

is chosen so that the equality condition at the gas front for both cases 
is satisfied. that is 

50 (1) cTI%l = to (0) Bz”’ (tl - T(l) )I” (3.9) 

From here, with the substitution c,,(l) = d 2, cc(O) = 2.2857 and 
09 = oltl, we have r (‘) = 0.61’7 tI. 

In this case it is appropriate to choose (3.‘7) as majorant .p(I). that 

is. p (I)(% t) = p,(x, t), where t > tl and for .p2 a function correspond- 
ing to an ;nstantaneous growth of the density at the zero section to a 
certain value KCT~(K < 1) for t = T (‘); it is necessary to choose K and 
r(2) in such a way that the whole curve 3 of the density distribution at 
the moment t = tl lies under the line 1 and the tangent to it (see 
figure). 

By graphical means it was found that K = 0.93, r(l) = 0.645 tI. 

Thus, p(l) and p(‘) must have the following form: 

p(l) =5.2201tl {t [i -0.43755(l)]-; [i - 0.4375E(‘)]2f.. .} 

p =x (Gh) -+c"~ [t - 0.617tl)-1’1 

p@) zz 4,85c1tl {; [I - 0.4375g@)] -A [l - 0.4375g(2)]2 +. . .> 

E(2) = ~(0,93~~t~)-“+ [t -0.645t1]-“’ 

and condition (3.4) for the function p,(x, t) for t > tl will be satis- 
f ied. 
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The area of the strip contained between 2 and 3 in the figure is 
roughly 15 per cent of the area lying below curve 2. 

From this it follows that Q(11/Q(2) = 1.15, where Q(l) and Qt2’ are 
volumes of fluid entering the porous medium at the time t = tl corre- 
sponding to p(l) and pC2). There- 
fore, when calculating the volume 
of the fluid in any case, the 
bounded variant in the error must 
not be greater than 15 per cent. 
From this it follows that the re- 
lative error is of order 7 to 8 
per cent. 

We observe that 

In a completely analogous manner problems can also be solved for the 

We do not carry out the calculation in detail here. We 
that p2 = 0.25, Q (1)/Q(2) 

= 1.08 for t = tl, that is, the 
linearly approximated will be of the order of 4 per cent. 

observe only 
error recti- 

4. It is known that the similarity solution of Equation (2.1) 

p (2, t) = POP/ (i.1) 

which corresponds to the exponential law of growth ~(0. t) = p,, exP@ t) 
at x = 0 [4 I, can be approximated by the straight line 

i (8 = i-S/E0 

Evidently it is possible on the basis of this to obtain the solution 
for the case in which ~(0, t) is a piecewise smooth function consisting 
of an exponential and power dependency. 

Let the density at x = 0, 0 < t < tl vary according to a power law; 
for t > tI the density behaves like the exponential ~(0, t) = p,, exp (o t). 

We consider the solutions ~(‘1 and pf2) corresponding to the follow- 
ing law of growth of the density at x = 0: 



1724 A.M. Pirvctdian 

We choose K so that the density distribution at the end of the first 
stage is contained in a strip of the distribution p(‘)(x, 

p(*)(Z 

tl) and 

z tl); thus, according to [3 I, relations (3.3) are satisfied. 
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